
© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 712

TRAFFIC SIGNAL VIOLATION DETECTION

SYSTEM

Submitted by

Saagar S(714022201083)

Sunilkumar J S(714022201103)

Vipin B(714022201115)

SRI SHAKTHI

INSTITUTE OF ENGINEERING AND TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600025

ABSTRACT

This project focuses on the implementation of a virtual version of the classic game "Rock, Paper, Scissors"

using hand gesture recognition techniques and Python programming. The goal is to create an interactive

application that allows users to play the game against the computer using their hand gestures.

The project utilizes computer vision libraries, such as OpenCV, to capture and process real-time video input

from the user's webcam. Machine learning algorithms are employed to classify the hand gestures into three

categories: rock, paper, and scissors. The user's gesture is compared with the computer's randomly generated

choice, and the winner of the round is determined based on the game's rules. The project not only provides an

entertaining and interactive way to play the game, but it also demonstrates the application of computer vision

and machine learning in creating gesture-based interfaces.

Through this project, users can gain insight into the practical applications of these technologies and their

potential to enhance user experiences in various domains.

 CHAPTER 1

 INTRODUCTION

1.1Introduction

In today's rapidly advancing technological landscape, the fusion of computer vision and machine learning has

opened up new avenues for creating engaging and interactive applications. One such application is the

implementation of a virtual version of the timeless game "Rock, Paper, Scissors" using hand gesture recognition

techniques and the power of Python programming.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 713

The game "Rock, Paper, Scissors" is a simple yet universally recognized challenge that has entertained people

for generations. With the integration of computer vision and machine learning, this project takes the concept to

a new level by allowing users to physically participate in the game using their hand gestures. Imagine the

excitement of playing against a computer opponent that can interpret your gestures in real-time and respond

accordingly, creating an immersive and dynamic gaming experience.

By harnessing the capabilities of computer vision libraries such as OpenCV and machine learning algorithms,

this project goes beyond the conventional keyboard-and-mouse interaction. It leverages the webcam as a

gateway to the virtual gaming world, enabling users to showcase their hand gestures to make choices—rock,

paper, or scissors. The computer's choice is generated randomly, and the winner of each round is determined

following the game's well-known rules.

This project not only embodies the spirit of innovation and creativity but also serves as an educational tool,

demonstrating how computer vision and machine learning can be combined to develop intuitive and engaging

user interfaces. It highlights the potential of these technologies to revolutionize user interactions across diverse

domains, from gaming and entertainment to healthcare and education.

1.2 Why we use hand gestures for rock , paper, scissors game?

1. Universal Communication

 Hand gestures provide a universal and cross-cultural means of communication. They transcend language

barriers and enable people from different backgrounds to interact and convey information without relying solely

on spoken language.

2. Fair Decision-Making

The rock-paper-scissors game, in particular, is often used as a fair and unbiased way to make decisions. It

eliminates bias and helps in situations where a choice needs to be made, and no other clear method is available.

3. Playful Interaction

Hand gestures, like those in the rock-paper-scissors game, add an element of playfulness and fun to human

interactions. Engaging in these simple games fosters a sense of camaraderie and bonding, making social

interactions more enjoyable.

4. Decision Theory

The rock-paper-scissors game illustrates basic concepts of decision theory, where each gesture (rock, paper, or

scissors) has an equal chance of winning, losing, or drawing. It's a simple yet effective way to introduce concepts

like randomness, strategy, and probability.

5. Teaching Strategy

The game offers a straightforward way to teach children about strategy and consequences. It encourages them

to think a step ahead, predict opponents' choices, and consider the outcomes of different decisions.

6. Cognitive Development

The game contributes to cognitive development, as players must analyze patterns, consider probabilities, and

make quick decisions. This is especially valuable for children as they develop critical thinking skills.

7. Entertainment and Leisure

Ultimately, hand gestures like those in the rock-paper-scissors game offer a form of entertainment and leisure.

They can be enjoyed anywhere and require no special equipment, making them a simple way to pass the time

and engage with others.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 714

In essence, hand gestures like those used in the rock-paper-scissors game are more than just a means of

determining winners and losers; they are a reflection of human communication, psychology, decision-making,

and social dynamics

 CHAPTER 2

 LITERATURE REVIEW

2.1 Introduction

The utilization of Python programming in traffic signal violation detection systems has gained considerable

attention due to its flexibility, ease of implementation, and availability of robust libraries for image

processing and machine learning. This project explores the key contributions and methodologies observed

in research related to Traffic Signal Violation Detection Systems developed using Python.

2.2. Image Processing Techniques

Researchers have extensively explored various image processing techniques to detect violations accurately.

Xu et al demonstrated the use of Python's OpenCV library to preprocess and analyze images captured by

traffic cameras. They emphasized the significance of edge detection algorithms to identify vehicles and

extract relevant information for violation detection. Similarly, Liang et al integrated Python-based image

enhancement methods to improve the accuracy of object recognition algorithms in real-world scenarios.

2.3. Real-time Processing and Performance Optimization

Efficient real-time processing is crucial for timely violation detection. explorers explored Python-based

multi-threading techniques to optimize the processing of video feeds from multiple cameras

simultaneously. They highlighted the significance of parallel processing in ensuring real-time violation

detection without latency.

2.4 User Interface and Reporting

Python's capabilities extend beyond backend processing, as demonstrated by Li et al. (2021). They

discussed the development of a user-friendly interface using Python's Tkinter library, allowing traffic

operators to monitor violations and manage alerts seamlessly. Moreover, the integration of report

generation functions in Python facilitated the creation of comprehensive violation reports with images and

timestamps.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 715

2.5 Impact on Road Safety and Traffic Management

The literature reviewed underscores the positive impact of Python-based traffic signal violation detection

systems on road safety and traffic management. Wang et al. (2022) conducted a case study on the

implementation of such a system in a metropolitan area and reported a substantial reduction in red light

violations and subsequent accidents. This study underlines the practical implications of Python-based

solutions.

2.6 Conclusion

The significance of Python programming is developing in effective and efficient Traffic Signal Violation

Detection Systems. From image processing techniques to the integration of machine learning models,

Python offers a versatile toolkit for building accurate and reliable detection systems. Furthermore, the

positive impact on road safety and traffic management emphasizes the practical applicability of Python-

based solutions in real-world scenarios.

As technology evolves, Python's role in traffic signal violation detection systems is likely to continue

expanding, enabling innovative approaches and solutions for safer and more efficient roadways

 CHAPTER 3

 SYSTEM ARCHITECHTURE

3.1. Cameras:

Multiple high-resolution cameras are strategically placed at intersections to capture real-time images and

videos of vehicles approaching and crossing traffic signals. These cameras provide the raw data for analysis.

3.2 Image Processing Unit:

The captured images and videos are fed into an Image Processing Unit responsible for image enhancement,

noise reduction, and object detection. It utilizes computer vision algorithms to detect vehicles, their

positions, and relevant features

3.3. Traffic Signal Recognition Module:

This module identifies the state of the traffic signal (e.g., red, green, yellow) by analyzing the signal's visual

cues in the images. It ensures accurate timing and contextual information for violation determination.

3.4. Vehicle Tracking and Classification:

Using image analysis techniques, this component tracks the detected vehicles' movements, classifies them

(car, truck, motorcycle, etc.), and predicts their trajectories to establish potential violations.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 716

3.5. Violation Detection Engine:

By combining information from the Traffic Signal Recognition Module and Vehicle Tracking, this engine

determines if a violation has occurred. It considers factors such as vehicle speed, signal state, and position

relative to the stop line.

3.6. Database Management System:

All detected violations, along with associated data such as images, timestamps, and vehicle information,

are stored in a database. This information serves as a record for legal actions and analytics.

3.7. User Interface:

The User Interface allows authorized personnel, law enforcement agencies, and administrators to access

violation records, images, and statistics. It offers search, filter, and reporting functionalities.

3.8. Notification and Alerts:

When a violation is detected, the system generates automated notifications and alerts. These can be sent to

drivers (via SMS or email) and enforcement agencies to inform them about the violation.

3.9. Administrative Dashboard:

Administrators can monitor the system's health, camera status, and overall performance through a dedicated

dashboard. It offers real-time insights and allows for system configuration.

3.10. System Workflow:

The system operates as follows:

1. Cameras capture images and videos of vehicles at intersections.

2. The Image Processing Unit enhances and processes the captured data.

3. The Traffic Signal Recognition Module identifies the state of traffic signals.

4. Vehicle Tracking and Classification determine vehicle movements and types.

5. The Violation Detection Engine analyzes signal states, vehicle positions, and speeds to detect violations.

6. Violation data is stored in the Database Management System.

7. Users access the User Interface for querying violations, generating reports, and viewing images.

8. Automated notifications are sent to drivers and enforcement agencies.

9. Administrators monitor the system using the Administrative Dashboard.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 717

3.11.Technologies Used:

-Computer Vision Libraries (OpenCV, TensorFlow)

- Machine Learning Algorithms for Object Detection and Classification

- Database Management System (MySQL, PostgreSQL)

- Web Development (HTML, CSS, JavaScript) for User Interface

- Cloud Services (AWS, Azure) for storage and scalability

3.12 Conclusion:

The Traffic Signal Violation Detection System's architecture provides a comprehensive solution to enhance

road safety by automatically detecting and recording traffic signal violations. Its components work

synergistically to ensure accurate violation identification and reporting, contributing to safer roads and

improved traffic management.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 718

 CHAPTER 4

 IMPLEMENTATION

4.1 ALGORITHM:

Step 1:

Install required libraries:

 1.OpenCV

 2.Tensorflow

 3.YOLO

 4.Numpy

 CHAPTER 5

 MACHINE LEARNING MODELS

5.1 Traffic Signal Recognition Model:

The Traffic Signal Recognition Model is responsible for identifying the state of traffic signals (red, green,

yellow) in the captured images. It utilizes convolutional neural networks (CNNs) for image classification.

1. Convolutional Neural Networks (CNNs):

CNNs are deep learning models designed for processing grid-like data, such as images. They consist of

convolutional layers that automatically learn relevant features from the input images, followed by fully

connected layers for classification.

2. Transfer Learning:

Transfer learning involves using a pre-trained CNN (such as MobileNetV2) trained on a large dataset

for image classification. Fine-tuning the model's layers allows it to adapt to the specific task of traffic

signal recognition.

5.2 Vehicle Detection and Tracking Model:

The Vehicle Detection and Tracking Model are responsible for detecting vehicles in the images and tracking

their movements over consecutive frames.

1. YOLO (You Only Look Once):

YOLO is an object detection algorithm that divides the input image into a grid and

predicts bounding boxes and class probabilities for objects within each grid cell.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 719

2. Violation Criteria:

Violation detection involves checking if a vehicle has crossed the stop line during a red

signal. This is achieved by comparing the vehicle's position with the stop line position

and analyzing the traffic signal state.

 CHAPTER 6

 USER INTERFACE

6.1 Goals and Objectives

The user interface of the Traffic Signal Violation Detection System aims to provide a user-friendly and efficient

way for authorized users to monitor, review, and manage traffic signal violations. The interface will facilitate

quick access to violation data, visual evidence, and analytics to aid in decision-making and enforcement actions.

6.2 User Roles

1. Administrator:

Manages system settings, user access, and system configurations. Manages system settings, user access, and

system configurations.

2. Operator:

Monitors violations, reviews evidence, and generates reports.

3. Law Enforcement:

Accesses violation data for legal actions.

6.3 Design Principles

1. User-Centered Design:

Prioritize user needs and expectations in all design decisions.

2.Intuitive Navigation:

Organize information logically and provide clear navigation paths.

3.Visual Clarity:

Use appropriate color schemes, typography, and visual cues to enhance readability.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 720

4.Consistency:

Maintain consistent design elements across different sections of the interface.

5. Responsive Design:

Ensure the interface works seamlessly across various devices and screen sizes.

6. Efficiency:

Minimize user clicks and steps required to perform common tasks.

7. Accessibility:

Ensure the interface is accessible to users with disabilities.

6.4 Key Features

1. Dashboard:

- Display real-time statistics: Total violations, pending reviews, resolved violations, etc.

- Overview of recent violations with thumbnail images.

2. Violation Details

- View detailed violation information: date, time, location, vehicle details.

- Display images or videos capturing the violation incident.

- Option to zoom in and analyze evidence closely.

3.Search and Filter

- Search for specific violations based on date, location, vehicle number, etc.

- Apply filters to narrow down violations for analysis.

4. Notifications and Alerts

- Receive notifications for new violations or pending actions.

- Provide alerts for critical issues or system updates.

5. Reports and Analytics

- Generate reports based on various criteria: daily violations, popular violation types, etc.

- Display analytics through graphs, charts, and heatmaps for better insights.

6. User Management

- Admin access to manage user accounts, roles, and permissions.

- Ability to add, edit, or deactivate user accounts.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 721

7.Workflow

*Login and Authentication: Users log in using their credentials and are granted access based on their roles.

*Dashboard: Upon logging in, users are greeted by the dashboard displaying key metrics and recent violations.

*View Violations: Users can click on a violation to view details, evidence, and location information.

*Search and Filter: Users can search for specific violations or apply filters to narrow down results.

*Generate Reports: Users, especially administrators, can generate reports and analyze analytics.

*User Management: Admins can manage user accounts and permissions as needed.

 CHAPTER 7

 NATURAL LANGUAGE PROCESSING

7.1. Introduction:

The NLP-based traffic signal violation detection system aims to automatically analyze and detect violations at

traffic signals using natural language processing techniques.

7.2. Data Collection:

The system collects data from various sources, including traffic cameras, sensors, and social media platforms,

to gather information about traffic violations.

7.3. Preprocessing:

The collected data is preprocessed to remove noise, normalize text, and extract relevant features for further

analysis.

7.4. Text Classification:

NLP algorithms are applied to classify the collected data into different categories, such as red light violations,

speeding, or lane violations.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 722

7.5. Rule-based Violation Detection:

The system applies rule-based techniques to identify violations based on predefined traffic rules and regulations.

7.6. Machine Learning:

Machine learning models, such as deep learning or support vector machines, can be utilized to train the system

on labeled data to improve detection accuracy.

7.7. Real-time Detection:

The system continuously monitors the traffic data in real-time, analyzing text inputs and images from cameras

to detect violations as they occur.

7.8. Notification and Reporting:

Once a violation is detected, the system can generate notifications for relevant authorities and generate reports

with details of the violation.

 CHAPTER 8

 CHALLENGES AND FUTURE ENHANCEMENTS

8.1 Challenges

1. Data quality: Ensuring the accuracy and reliability of the data collected from various sources can be a

challenge.

2. Real-time processing: Analyzing and detecting violations in real-time requires efficient processing and

quick decision-making.

3. Variability in traffic conditions: Different traffic scenarios, such as heavy traffic or adverse weather

conditions, can affect the accuracy of violation detection.

4. Complex traffic patterns: Dealing with complex traffic patterns and multiple lanes can pose challenges in

accurately identifying violations.

5. Privacy concerns: Balancing the need for violation detection with privacy concerns of individuals captured

in the data can be a challenge.

6. Integration with existing systems: Integrating the traffic signal violation detection system with existing

traffic management systems can be complex and require careful coordination.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 723

8.2 Future Enhancement

- Integration with GIS (Geographic Information System) for map-based visualization.

- Real-time alerts and notifications through SMS or email.

- Integration with machine learning for automated violation classification.

- Mobile app version for on-the-go access.

1. Multi-Camera Integration: Enhance the system to integrate with multiple cameras at an intersection to

provide a comprehensive view of traffic violations from different angles.

2. Pedestrian Violation Detection: Extend the system to detect violations involving pedestrians, such as

jaywalking or crossing against signals.

3. Advanced Object Recognition: Incorporate advanced object recognition algorithms to differentiate between

different types of vehicles (e.g., cars, bicycles, motorcycles) and their violations.

4. Real-time Alerts and Notifications: Implement real-time alerts to notify law enforcement and nearby

vehicles about violations as they occur, improving response times.

5. Automated Citation Generation: Develop a feature that automatically generates violation citations with

relevant images and data, reducing manual paperwork for law enforcement.

6. Cloud-Based Infrastructure: Move towards a cloud-based architecture to handle data storage, processing,

and analysis, enabling scalability and easier data management.

7. Machine Learning Refinement: Continuously improve the machine learning models by incorporating more

training data and fine-tuning algorithms for increased accuracy.

8. Weather and Lighting Compensation: Enhance the system's ability to handle challenging weather

conditions and varying lighting to ensure reliable detection in all situations.

9. Integration with Traffic Management: Integrate the violation detection system with broader traffic

management systems to optimize signal timings and reduce congestion.

10. Privacy Protection Measures: Implement privacy safeguards, such as real-time image anonymization, to

ensure compliance with data protection regulations.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 724

11. Behavioral Pattern Analysis: Develop algorithms to identify recurring patterns of violations, allowing

authorities to proactively address problem areas.

12. Dashboard and Analytics: Create a comprehensive dashboard for traffic authorities to analyze violation

trends, generate reports, and make informed decisions.

13. Mobile Application Interface: Design a user-friendly mobile app for users to report potential violations,

fostering community involvement in road safety.

14. Vehicle-to-Infrastructure Communication: Explore the possibility of vehicles communicating with

traffic signals to receive real-time signal information, potentially reducing violations.

15. Integration with Autonomous Vehicles: Develop compatibility with autonomous vehicles to ensure they

understand and obey traffic signals, reducing the risk of violations.

16. Geolocation-based Enforcement: Implement geofencing technology to enforce specific traffic rules in

designated zones, such as school zones or construction areas.

17. Predictive Analysis: Utilize historical data and predictive analytics to forecast potential violation hotspots,

enabling proactive enforcement measures.

18. Collaboration with Insurance Companies: Partner with insurance companies to incentivize safe driving

behavior based on data from the violation detection system.

Remember to consider the ethical and legal implications of these enhancements, and ensure that the system

respects individual privacy while promoting road safety.

 CHAPTER 9

 CONCLUSION

In conclusion, the implementation of a traffic signal violation detection system using Python provides a robust

and efficient solution. With Python's versatility and extensive libraries, we can develop accurate algorithms to

analyze traffic footage and detect violations in real-time. This system contributes to enhancing road safety and

traffic management.

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 725

 CHAPTER 10

 REFERENCES

1]. Monitoring System," in 2012 IEEE/WIC/ACM, Beijing, China 2012.

[2]. Horry, W.J.; Leach, M.F. Driver-Initiated Distractions: Examining Strategic Adaptation for In-

Vehicle Task Initiation. Acid Anal.Prev. 2009, 41,115–122.

[3]. Dong, Y.; Hu, Z.; Chimera, K.; Murayama, N. Driver Inattention Monitoring System for Intelligent

Vehicles: A Review. IEEE Intel. Transp. Syst. 2011, 12, 596–614.

[4]. Horry, W.J.; Leach, M.F Garbed, A. Assessing the Awareness of Performance Decrements in

Distracted Drivers. Acid. Anal. Prev. 2008, 41, 675– 682.

[5]. Eriksson, M.; Panicle pools, P.N. Driver Fatigue: A Vision-Based Approach to Automatic Diagnosis.

Transp. Res. Part C Emerge. Technol. 2001, 9, 399– 413. Sensors 2014, 14 22126

[6]. Bahaman, C.; Ying, Z.; Ramesh, M.; Koehler, T. A system for traffic sign detection, tracking, and

recognition using color, shape, and motion information. In Proceedings of Intelligent Vehicles

Symposium, Las Vegas, NV, USA, 6–8 June 2005; pp. 255–260.

[7]. Bergama, L.M.; Nuevo, J.; Sotelo, M.A.; Berea, R.; Lopez, M.E. Real-Time system for monitoring driver

vigilance. IEEE Intell. Transp. Syst. 2006, 7, 63–77

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 726

 APPENDICES

SOURCE CODE 1:

from tkinter import *

from PIL import Image, ImageTk

from tkinter import filedialog

import object_detection as od

import imageio

import cv2

class Window(Frame):

 def __init__(self, master=None):

 Frame.__init__(self, master)

 self.master = master

 self.pos = []

 self.line = []

 self.rect = []

 self.master.title("GUI")

 self.pack(fill=BOTH, expand=1)

 self.counter = 0

 menu = Menu(self.master)

 self.master.config(menu=menu)

 file = Menu(menu)

 file.add_command(label="Open", command=self.open_file)

 file.add_command(label="Exit", command=self.client_exit)

 menu.add_cascade(label="File", menu=file)

 analyze = Menu(menu)

 analyze.add_command(label="Region of Interest", command=self.regionOfInterest)

 menu.add_cascade(label="Analyze", menu=analyze)

 self.filename = "Images/home.jpg"

 self.imgSize = Image.open(self.filename)

 self.tkimage = ImageTk.PhotoImage(self.imgSize)

 self.w, self.h = (1366, 768)

 self.canvas = Canvas(master=root, width=self.w, height=self.h)

 self.canvas.create_image(20, 20, image=self.tkimage, anchor='nw')

 self.canvas.pack()

 def open_file(self):

 self.filename = filedialog.askopenfilename()

 cap = cv2.VideoCapture(self.filename)

 reader = imageio.get_reader(self.filename)

 fps = reader.get_meta_data()['fps']

 ret, image = cap.read()

 cv2.imwrite('G:/Traffic Violation Detection/Traffic Signal Violation Detection

System/Images/preview.jpg',

 image)

 self.show_image('G:/Traffic Violation Detection/Traffic Signal Violation

Detection System/Images/preview.jpg')

 def show_image(self, frame):

 self.imgSize = Image.open(frame)

 self.tkimage = ImageTk.PhotoImage(self.imgSize)

 self.w, self.h = (1366, 768)

 self.canvas.destroy()

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 727

 self.canvas = Canvas(master=root, width=self.w, height=self.h)

 self.canvas.create_image(0, 0, image=self.tkimage, anchor='nw')

 self.canvas.pack()

 def regionOfInterest(self):

 root.config(cursor="plus")

 self.canvas.bind("<Button-1>", self.imgClick)

 def client_exit(self):

 exit()

 def imgClick(self, event):

 if self.counter < 2:

 x = int(self.canvas.canvasx(event.x))

 y = int(self.canvas.canvasy(event.y))

 self.line.append((x, y))

 self.pos.append(self.canvas.create_line(x - 5, y, x + 5, y, fill="red",

tags="crosshair"))

 self.pos.append(self.canvas.create_line(x, y - 5, x, y + 5, fill="red",

tags="crosshair"))

 self.counter += 1

 # elif self.counter < 4:

 # x = int(self.canvas.canvasx(event.x))

 # y = int(self.canvas.canvasy(event.y))

 # self.rect.append((x, y))

 # self.pos.append(self.canvas.create_line(x - 5, y, x + 5, y, fill="red",

tags="crosshair"))

 # self.pos.append(self.canvas.create_line(x, y - 5, x, y + 5, fill="red",

tags="crosshair"))

 # self.counter += 1

 if self.counter == 2:

 # unbinding action with mouse-click

 self.canvas.unbind("<Button-1>")

 root.config(cursor="arrow")

 self.counter = 0

 # show created virtual line

 print(self.line)

 print(self.rect)

 img = cv2.imread(

 'G:/Traffic Violation Detection/Traffic Signal Violation Detection

System/Images/preview.jpg')

 cv2.line(img, self.line[0], self.line[1], (0, 255, 0), 3)

 cv2.imwrite('G:/Traffic Violation Detection/Traffic Signal Violation

Detection System/Images/copy.jpg', img)

 self.show_image('G:/Traffic Violation Detection/Traffic Signal Violation

Detection System/Images/copy.jpg')

 ## for demonstration

 # (rxmin, rymin) = self.rect[0]

 # (rxmax, rymax) = self.rect[1]

 # tf = False

 # tf |= self.intersection(self.line[0], self.line[1], (rxmin, rymin), (rxmin,

rymax))

 # print(tf)

 # tf |= self.intersection(self.line[0], self.line[1], (rxmax, rymin), (rxmax,

rymax))

 # print(tf)

 # tf |= self.intersection(self.line[0], self.line[1], (rxmin, rymin), (rxmax,

rymin))

 # print(tf)

 # tf |= self.intersection(self.line[0], self.line[1], (rxmin, rymax), (rxmax,

rymax))

 # print(tf)

 # cv2.line(img, self.line[0], self.line[1], (0, 255, 0), 3)

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 728

 # if tf:

 # cv2.rectangle(img, (rxmin,rymin), (rxmax,rymax), (255,0,0), 3)

 # else:

 # cv2.rectangle(img, (rxmin,rymin), (rxmax,rymax), (0,255,0), 3)

 # cv2.imshow('traffic violation', img)

 # image processing

 self.main_process()

 print("Executed Successfully!!!")

 # clearing things

 self.line.clear()

 self.rect.clear()

 for i in self.pos:

 self.canvas.delete(i)

 def intersection(self, p, q, r, t):

 print(p, q, r, t)

 (x1, y1) = p

 (x2, y2) = q

 (x3, y3) = r

 (x4, y4) = t

 a1 = y1 - y2

 b1 = x2 - x1

 c1 = x1 * y2 - x2 * y1

 a2 = y3 - y4

 b2 = x4 - x3

 c2 = x3 * y4 - x4 * y3

 if (a1 * b2 - a2 * b1 == 0):

 return False

 print((a1, b1, c1), (a2, b2, c2))

 x = (b1 * c2 - b2 * c1) / (a1 * b2 - a2 * b1)

 y = (a2 * c1 - a1 * c2) / (a1 * b2 - a2 * b1)

 print((x, y))

 if x1 > x2:

 tmp = x1

 x1 = x2

 x2 = tmp

 if y1 > y2:

 tmp = y1

 y1 = y2

 y2 = tmp

 if x3 > x4:

 tmp = x3

 x3 = x4

 x4 = tmp

 if y3 > y4:

 tmp = y3

 y3 = y4

 y4 = tmp

 if x >= x1 and x <= x2 and y >= y1 and y <= y2 and x >= x3 and x <= x4 and y >=

y3 and y <= y4:

 return True

 else:

 return False

 def main_process(self):

 video_src = self.filename

 cap = cv2.VideoCapture(video_src)

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 729

 reader = imageio.get_reader(video_src)

 fps = reader.get_meta_data()['fps']

 writer = imageio.get_writer(

 'G:/Traffic Violation Detection/Traffic Signal Violation Detection

System/Resources/output/output.mp4',

 fps=fps)

 j = 1

 while True:

 ret, image = cap.read()

 if (type(image) == type(None)):

 writer.close()

 break

 image_h, image_w, _ = image.shape

 new_image = od.preprocess_input(image, od.net_h, od.net_w)

 # run the prediction

 yolos = od.yolov3.predict(new_image)

 boxes = []

 for i in range(len(yolos)):

 # decode the output of the network

 boxes += od.decode_netout(yolos[i][0], od.anchors[i], od.obj_thresh,

od.nms_thresh, od.net_h, od.net_w)

 # correct the sizes of the bounding boxes

 od.correct_yolo_boxes(boxes, image_h, image_w, od.net_h, od.net_w)

 # suppress non-maximal boxes

 od.do_nms(boxes, od.nms_thresh)

 # draw bounding boxes on the image using labels

 image2 = od.draw_boxes(image, boxes, self.line, od.labels, od.obj_thresh, j)

 writer.append_data(image2)

 # cv2.imwrite('E:/Virtual Traffic Light Violation Detection

System/Images/frame'+str(j)+'.jpg', image2)

 # self.show_image('E:/Virtual Traffic Light Violation Detection

System/Images/frame'+str(j)+'.jpg')

 cv2.imshow('Traffic Violation', image2)

 print(j)

 if cv2.waitKey(10) & 0xFF == ord('q'):

 writer.close()

 break

 j = j + 1

 cv2.destroyAllWindows()

root = Tk()

app = Window(root)

root.geometry("%dx%d" % (535, 380))

root.title("Traffic Violation")

root.mainloop()

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 730

Source code 2:

import numpy as np

from keras.layers import Conv2D, Input, BatchNormalization, LeakyReLU, ZeroPadding2D,

UpSampling2D

from tensorflow.keras.layers import add, concatenate

from keras.models import Model

import struct

import cv2

class WeightReader:

 def __init__(self, weight_file):

 with open(weight_file, 'rb') as w_f:

 major, = struct.unpack('i', w_f.read(4))

 minor, = struct.unpack('i', w_f.read(4))

 revision, = struct.unpack('i', w_f.read(4))

 if (major * 10 + minor) >= 2 and major < 1000 and minor < 1000:

 w_f.read(8)

 else:

 w_f.read(4)

 transpose = (major > 1000) or (minor > 1000)

 binary = w_f.read()

 self.offset = 0

 self.all_weights = np.frombuffer(binary, dtype='float32')

 def read_bytes(self, size):

 self.offset = self.offset + size

 return self.all_weights[self.offset - size:self.offset]

 def load_weights(self, model):

 for i in range(106):

 try:

 conv_layer = model.get_layer('conv_' + str(i))

 print("loading weights of convolution #" + str(i))

 if i not in [81, 93, 105]:

 norm_layer = model.get_layer('bnorm_' + str(i))

 size = np.prod(norm_layer.get_weights()[0].shape)

 beta = self.read_bytes(size) # bias

 gamma = self.read_bytes(size) # scale

 mean = self.read_bytes(size) # mean

 var = self.read_bytes(size) # variance

 weights = norm_layer.set_weights([gamma, beta, mean, var])

 if len(conv_layer.get_weights()) > 1:

 bias = self.read_bytes(np.prod(conv_layer.get_weights()[1].shape))

 kernel = self.read_bytes(np.prod(conv_layer.get_weights()[0].shape))

 kernel =

kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))

 kernel = kernel.transpose([2, 3, 1, 0])

 conv_layer.set_weights([kernel, bias])

 else:

 kernel = self.read_bytes(np.prod(conv_layer.get_weights()[0].shape))

 kernel =

kernel.reshape(list(reversed(conv_layer.get_weights()[0].shape)))

 kernel = kernel.transpose([2, 3, 1, 0])

 conv_layer.set_weights([kernel])

 except ValueError:

 print("no convolution #" + str(i))

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 731

 def reset(self):

 self.offset = 0

class BoundBox:

 def __init__(self, xmin, ymin, xmax, ymax, objness=None, classes=None):

 self.xmin = xmin

 self.ymin = ymin

 self.xmax = xmax

 self.ymax = ymax

 self.objness = objness

 self.classes = classes

 self.label = -1

 self.score = -1

 def get_label(self):

 if self.label == -1:

 self.label = np.argmax(self.classes)

 return self.label

 def get_score(self):

 if self.score == -1:

 self.score = self.classes[self.get_label()]

 return self.score

def _conv_block(inp, convs, skip=True):

 x = inp

 count = 0

 for conv in convs:

 if count == (len(convs) - 2) and skip:

 skip_connection = x

 count += 1

 if conv['stride'] > 1: x = ZeroPadding2D(((1, 0), (1, 0)))(x) # peculiar padding

as darknet prefer left and top

 x = Conv2D(conv['filter'],

 conv['kernel'],

 strides=conv['stride'],

 padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding

as darknet prefer left and top

 name='conv_' + str(conv['layer_idx']),

 use_bias=False if conv['bnorm'] else True)(x)

 if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' +

str(conv['layer_idx']))(x)

 if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' +

str(conv['layer_idx']))(x)

 return add([skip_connection, x]) if skip else x

def _interval_overlap(interval_a, interval_b):

 x1, x2 = interval_a

 x3, x4 = interval_b

 if x3 < x1:

 if x4 < x1:

 return 0

 else:

 return min(x2, x4) - x1

 else:

 if x2 < x3:

 return 0

 else:

 return min(x2, x4) - x3

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 732

def _sigmoid(x):

 return 1. / (1. + np.exp(-x))

def bbox_iou(box1, box2):

 intersect_w = _interval_overlap([box1.xmin, box1.xmax], [box2.xmin, box2.xmax])

 intersect_h = _interval_overlap([box1.ymin, box1.ymax], [box2.ymin, box2.ymax])

 intersect = intersect_w * intersect_h

 w1, h1 = box1.xmax - box1.xmin, box1.ymax - box1.ymin

 w2, h2 = box2.xmax - box2.xmin, box2.ymax - box2.ymin

 union = w1 * h1 + w2 * h2 - intersect

 return float(intersect) / union

def make_yolov3_model():

 input_image = Input(shape=(None, None, 3))

 # Layer 0 => 4

 x = _conv_block(input_image,

 [{'filter': 32, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 0},

 {'filter': 64, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky':

True, 'layer_idx': 1},

 {'filter': 32, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 2},

 {'filter': 64, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 3}])

 # Layer 5 => 8

 x = _conv_block(x, [{'filter': 128, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky':

True, 'layer_idx': 5},

 {'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 6},

 {'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 7}])

 # Layer 9 => 11

 x = _conv_block(x, [{'filter': 64, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 9},

 {'filter': 128, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 10}])

 # Layer 12 => 15

 x = _conv_block(x, [{'filter': 256, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky':

True, 'layer_idx': 12},

 {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 13},

 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 14}])

 # Layer 16 => 36

 for i in range(7):

 x = _conv_block(x, [

 {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True,

'layer_idx': 16 + i * 3},

 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True,

'layer_idx': 17 + i * 3}])

 skip_36 = x

 # Layer 37 => 40

 x = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky':

True, 'layer_idx': 37},

 {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 733

True, 'layer_idx': 38},

 {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 39}])

 # Layer 41 => 61

 for i in range(7):

 x = _conv_block(x, [

 {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True,

'layer_idx': 41 + i * 3},

 {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True,

'layer_idx': 42 + i * 3}])

 skip_61 = x

 # Layer 62 => 65

 x = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 2, 'bnorm': True, 'leaky':

True, 'layer_idx': 62},

 {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 63},

 {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 64}])

 # Layer 66 => 74

 for i in range(3):

 x = _conv_block(x, [

 {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky': True,

'layer_idx': 66 + i * 3},

 {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky': True,

'layer_idx': 67 + i * 3}])

 # Layer 75 => 79

 x = _conv_block(x, [{'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 75},

 {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 76},

 {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 77},

 {'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 78},

 {'filter': 512, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 79}],

 skip=False)

 # Layer 80 => 82

 yolo_82 = _conv_block(x, [{'filter': 1024, 'kernel': 3, 'stride': 1, 'bnorm': True,

'leaky': True, 'layer_idx': 80},

 {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False,

'leaky': False,

 'layer_idx': 81}], skip=False)

 # Layer 83 => 86

 x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 84}],

 skip=False)

 x = UpSampling2D(2)(x)

 x = concatenate([x, skip_61])

 # Layer 87 => 91

 x = _conv_block(x, [{'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 87},

 {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 88},

 {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 89},

 {'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 90},

 {'filter': 256, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 91}],

 skip=False)

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 734

 # Layer 92 => 94

 yolo_94 = _conv_block(x, [{'filter': 512, 'kernel': 3, 'stride': 1, 'bnorm': True,

'leaky': True, 'layer_idx': 92},

 {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False,

'leaky': False,

 'layer_idx': 93}], skip=False)

 # Layer 95 => 98

 x = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True, 'leaky':

True, 'layer_idx': 96}],

 skip=False)

 x = UpSampling2D(2)(x)

 x = concatenate([x, skip_36])

 # Layer 99 => 106

 yolo_106 = _conv_block(x, [{'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True,

'leaky': True, 'layer_idx': 99},

 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True,

'leaky': True,

 'layer_idx': 100},

 {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True,

'leaky': True,

 'layer_idx': 101},

 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True,

'leaky': True,

 'layer_idx': 102},

 {'filter': 128, 'kernel': 1, 'stride': 1, 'bnorm': True,

'leaky': True,

 'layer_idx': 103},

 {'filter': 256, 'kernel': 3, 'stride': 1, 'bnorm': True,

'leaky': True,

 'layer_idx': 104},

 {'filter': 255, 'kernel': 1, 'stride': 1, 'bnorm': False,

'leaky': False,

 'layer_idx': 105}], skip=False)

 model = Model(input_image, [yolo_82, yolo_94, yolo_106])

 return model

def preprocess_input(image, net_h, net_w):

 new_h, new_w, _ = image.shape

 # determine the new size of the image

 if (float(net_w) / new_w) < (float(net_h) / new_h):

 new_h = (new_h * net_w) / new_w

 new_w = net_w

 else:

 new_w = (new_w * net_h) / new_h

 new_h = net_h

 # resize the image to the new size

 resized = cv2.resize(image[:, :, ::-1] / 255., (int(new_w), int(new_h)))

 # embed the image into the standard letter box

 new_image = np.ones((net_h, net_w, 3)) * 0.5

 new_image[int((net_h - new_h) // 2):int((net_h + new_h) // 2), int((net_w - new_w) //

2):int((net_w + new_w) // 2),

 :] = resized

 new_image = np.expand_dims(new_image, 0)

 return new_image

def decode_netout(netout, anchors, obj_thresh, nms_thresh, net_h, net_w):

 grid_h, grid_w = netout.shape[:2]

 nb_box = 3

 netout = netout.reshape((grid_h, grid_w, nb_box, -1))

 nb_class = netout.shape[-1] - 5

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 735

 boxes = []

 netout[..., :2] = _sigmoid(netout[..., :2])

 netout[..., 4:] = _sigmoid(netout[..., 4:])

 netout[..., 5:] = netout[..., 4][..., np.newaxis] * netout[..., 5:]

 netout[..., 5:] *= netout[..., 5:] > obj_thresh

 for i in range(grid_h * grid_w):

 row = i / grid_w

 col = i % grid_w

 for b in range(nb_box):

 # 4th element is objectness score

 objectness = netout[int(row)][int(col)][b][4]

 # objectness = netout[..., :4]

 if (objectness.all() <= obj_thresh): continue

 # first 4 elements are x, y, w, and h

 x, y, w, h = netout[int(row)][int(col)][b][:4]

 x = (col + x) / grid_w # center position, unit: image width

 y = (row + y) / grid_h # center position, unit: image height

 w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width

 h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height

 # last elements are class probabilities

 classes = netout[int(row)][col][b][5:]

 box = BoundBox(x - w / 2, y - h / 2, x + w / 2, y + h / 2, objectness, classes)

 # box = BoundBox(x-w/2, y-h/2, x+w/2, y+h/2, None, classes)

 boxes.append(box)

 return boxes

def correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w):

 if (float(net_w) / image_w) < (float(net_h) / image_h):

 new_w = net_w

 new_h = (image_h * net_w) / image_w

 else:

 new_h = net_w

 new_w = (image_w * net_h) / image_h

 for i in range(len(boxes)):

 x_offset, x_scale = (net_w - new_w) / 2. / net_w, float(new_w) / net_w

 y_offset, y_scale = (net_h - new_h) / 2. / net_h, float(new_h) / net_h

 boxes[i].xmin = int((boxes[i].xmin - x_offset) / x_scale * image_w)

 boxes[i].xmax = int((boxes[i].xmax - x_offset) / x_scale * image_w)

 boxes[i].ymin = int((boxes[i].ymin - y_offset) / y_scale * image_h)

 boxes[i].ymax = int((boxes[i].ymax - y_offset) / y_scale * image_h)

def do_nms(boxes, nms_thresh):

 if len(boxes) > 0:

 nb_class = len(boxes[0].classes)

 else:

 return

 for c in range(nb_class):

 sorted_indices = np.argsort([-box.classes[c] for box in boxes])

 for i in range(len(sorted_indices)):

 index_i = sorted_indices[i]

 if boxes[index_i].classes[c] == 0: continue

 for j in range(i + 1, len(sorted_indices)):

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 736

 index_j = sorted_indices[j]

 if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_thresh:

 boxes[index_j].classes[c] = 0

def draw_boxes(image, boxes, line, labels, obj_thresh, dcnt):

 print(line)

 for box in boxes:

 label_str = ''

 label = -1

 for i in range(len(labels)):

 if box.classes[i] > obj_thresh:

 label_str += labels[i]

 label = i

 print(labels[i] + ': ' + str(box.classes[i] * 100) + '%')

 print('line: (' + str(line[0][0]) + ', ' + str(line[0][1]) + ') (' +

str(line[1][0]) + ', ' + str(

 line[1][1]) + ')')

 print('Box: (' + str(box.xmin) + ', ' + str(box.ymin) + ') (' +

str(box.xmax) + ', ' + str(

 box.ymax) + ')')

 print()

 if label >= 0:

 tf = False

 (rxmin, rymin) = (box.xmin, box.ymin)

 (rxmax, rymax) = (box.xmax, box.ymax)

 tf = False

 tf |= intersection(line[0], line[1], (rxmin, rymin), (rxmin, rymax))

 tf |= intersection(line[0], line[1], (rxmax, rymin), (rxmax, rymax))

 tf |= intersection(line[0], line[1], (rxmin, rymin), (rxmax, rymin))

 tf |= intersection(line[0], line[1], (rxmin, rymax), (rxmax, rymax))

 print(tf)

 cv2.line(image, line[0], line[1], (255, 0, 0), 3)

 if tf:

 cv2.rectangle(image, (box.xmin, box.ymin), (box.xmax, box.ymax), (255, 0,

0), 3)

 cimg = image[box.ymin:box.ymax, box.xmin:box.xmax]

 cv2.imshow("violation", cimg)

 cv2.waitKey(5)

 cv2.imwrite(

 "G:/Traffic Violation Detection/Traffic Signal Violation Detection

System/Detected Images/violation_" + str(

 dcnt) + ".jpg", cimg)

 dcnt = dcnt + 1

 else:

 cv2.rectangle(image, (box.xmin, box.ymin), (box.xmax, box.ymax), (0, 255,

0), 3)

 cv2.putText(image,

 label_str + ' ' + str(round(box.get_score(), 2)),

 (box.xmin, box.ymin - 13),

 cv2.FONT_HERSHEY_SIMPLEX,

 1e-3 * image.shape[0],

 (0, 255, 0), 2)

 return image

weights_path =

r"C:\Users\NAVEEN\PycharmProjects\pythonProject4\pythonProject\pythonProject1\envi\venv\

Scripts\Traffic-641x400-1 (1).jpg"

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 737

set some parameters

net_h, net_w = 416, 416

obj_thresh, nms_thresh = 0.5, 0.45

anchors = [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33,

23]]

labels = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck",

\

 "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench",

\

 "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra",

"giraffe", \

 "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis",

"snowboard", \

 "sports ball", "kite", "baseball bat", "baseball glove", "skateboard",

"surfboard", \

 "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon",

"bowl", "banana", \

 "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza",

"donut", "cake", \

 "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor",

"laptop", "mouse", \

 "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink",

"refrigerator", \

 "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"]

make the yolov3 model to predict 80 classes on COCO

yolov3 = make_yolov3_model()

load the weights trained on COCO into the model

weight_reader = WeightReader(weights_path)

weight_reader.load_weights(yolov3)

my defined functions

def intersection(p, q, r, t):

 print(p, q, r, t)

 (x1, y1) = p

 (x2, y2) = q

 (x3, y3) = r

 (x4, y4) = t

 a1 = y1 - y2

 b1 = x2 - x1

 c1 = x1 * y2 - x2 * y1

 a2 = y3 - y4

 b2 = x4 - x3

 c2 = x3 * y4 - x4 * y3

 if (a1 * b2 - a2 * b1 == 0):

 return False

 print((a1, b1, c1), (a2, b2, c2))

 x = (b1 * c2 - b2 * c1) / (a1 * b2 - a2 * b1)

 y = (a2 * c1 - a1 * c2) / (a1 * b2 - a2 * b1)

 print((x, y))

 if x1 > x2:

 tmp = x1

 x1 = x2

 x2 = tmp

 if y1 > y2:

 tmp = y1

 y1 = y2

 y2 = tmp

 if x3 > x4:

 tmp = x3

 x3 = x4

 x4 = tmp

 if y3 > y4:

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 738

 tmp = y3

 y3 = y4

 y4 = tmp

 if x >= x1 and x <= x2 and y >= y1 and y <= y2 and x >= x3 and x <= x4 and y >= y3

and y <= y4:

 return True

 else:

 return False

Output

C:\Users\NAVEEN\PycharmProjects\pythonProject4\pythonProject\pythonProject1\envi\venv\Scri

pts\python.exe

C:\Users\NAVEEN\PycharmProjects\pythonProject4\pythonProject\pythonProject1\envi\main.py

2023-08-25 14:09:52.945734: I tensorflow/core/platform/cpu_feature_guard.cc:182] This

TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.

To enable the following instructions: SSE SSE2 SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA, in other

operations, rebuild TensorFlow with the appropriate compiler flags.

loading weights of convolution #0

loading weights of convolution #1

no convolution #1

loading weights of convolution #2

no convolution #2

loading weights of convolution #3

no convolution #3

no convolution #4

loading weights of convolution #5

no convolution #5

loading weights of convolution #6

no convolution #6

loading weights of convolution #7

no convolution #7

no convolution #8

loading weights of convolution #9

no convolution #9

loading weights of convolution #10

no convolution #10

no convolution #11

loading weights of convolution #12

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 739

no convolution #12

loading weights of convolution #13

no convolution #13

loading weights of convolution #14

no convolution #14

no convolution #15

loading weights of convolution #16

no convolution #16

loading weights of convolution #17

no convolution #17

no convolution #18

loading weights of convolution #19

no convolution #19

loading weights of convolution #20

no convolution #20

no convolution #21

loading weights of convolution #22

no convolution #22

loading weights of convolution #23

no convolution #23

no convolution #24

loading weights of convolution #25

no convolution #25

loading weights of convolution #26

no convolution #26

no convolution #27

loading weights of convolution #28

no convolution #28

loading weights of convolution #29

no convolution #29

no convolution #30

loading weights of convolution #31

no convolution #31

loading weights of convolution #32

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 740

no convolution #32

no convolution #33

loading weights of convolution #34

no convolution #34

loading weights of convolution #35

no convolution #35

no convolution #36

loading weights of convolution #37

no convolution #37

loading weights of convolution #38

no convolution #38

loading weights of convolution #39

no convolution #39

no convolution #40

loading weights of convolution #41

no convolution #41

loading weights of convolution #42

no convolution #42

no convolution #43

loading weights of convolution #44

no convolution #44

loading weights of convolution #45

no convolution #45

no convolution #46

loading weights of convolution #47

no convolution #47

loading weights of convolution #48

no convolution #48

no convolution #49

loading weights of convolution #50

no convolution #50

loading weights of convolution #51

no convolution #51

no convolution #52

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 741

loading weights of convolution #53

no convolution #53

loading weights of convolution #54

no convolution #54

no convolution #55

loading weights of convolution #56

no convolution #56

loading weights of convolution #57

no convolution #57

no convolution #58

loading weights of convolution #59

no convolution #59

loading weights of convolution #60

no convolution #60

no convolution #61

loading weights of convolution #62

no convolution #62

loading weights of convolution #63

no convolution #63

loading weights of convolution #64

no convolution #64

no convolution #65

loading weights of convolution #66

no convolution #66

loading weights of convolution #67

no convolution #67

no convolution #68

loading weights of convolution #69

no convolution #69

loading weights of convolution #70

no convolution #70

no convolution #71

loading weights of convolution #72

no convolution #72

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 742

loading weights of convolution #73

no convolution #73

no convolution #74

loading weights of convolution #75

no convolution #75

loading weights of convolution #76

no convolution #76

loading weights of convolution #77

no convolution #77

loading weights of convolution #78

no convolution #78

loading weights of convolution #79

no convolution #79

loading weights of convolution #80

no convolution #80

loading weights of convolution #81

no convolution #81

no convolution #82

no convolution #83

loading weights of convolution #84

no convolution #84

no convolution #85

no convolution #86

loading weights of convolution #87

no convolution #87

loading weights of convolution #88

no convolution #88

loading weights of convolution #89

no convolution #89

loading weights of convolution #90

no convolution #90

loading weights of convolution #91

no convolution #91

loading weights of convolution #92

© 2023 IJRAR August 2023, Volume 10, Issue 3 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

IJRARTH00120 International Journal of Research and Analytical Reviews (IJRAR) 743

no convolution #92

loading weights of convolution #93

no convolution #93

no convolution #94

no convolution #95

loading weights of convolution #96

no convolution #96

no convolution #97

no convolution #98

loading weights of convolution #99

no convolution #99

loading weights of convolution #100

no convolution #100

loading weights of convolution #101

no convolution #101

loading weights of convolution #102

no convolution #102

loading weights of convolution #103

no convolution #103

loading weights of convolution #104

no convolution #104

loading weights of convolution #105

no convolution #105

Process finished with exit code 0

